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C
ognitive disorders, encompassing
changes in acute mental status
and prolonged cognitive impair-

ments, are often seen following hospital-
ization and largely contribute to func-
tional impairment worldwide, especially
with a steady increase in the geriatric
population (1, 2). Much progress in the
field of postoperative cognitive decline
has happened over the last decade, with
several studies contributing to a better
understanding on the pathogenesis of
this phenomenon at both the preclinical
and clinical levels.

Overview on Postoperative Cognitive
Dysfunctions

The initial observation that memory and

learning disabilities may occur following
surgery and anesthesia has long been
known, as referred to as "insanity" by
George Savage in 1887. We can now di-
vide the field of postoperative cognitive
decline into two main categories: post-
operative delirium (POD) and longer-
term postoperative cognitive dysfunc-
tion (POCD) (3). Delirium is a more evi-
dent and severe form of cognitive fail-
ure that meets defined criteria in the Di-
agnostic and Statistical Manual of Men-
tal Disorders IV (DSM- IV). POD affects
up to 50% of elderly patients, costing
more than US $164 billion per year in
the USA and over $182 billion per year
in EU (4). POCD is a more subtle dys-
function affecting one or more cogni-
tive domains following surgery and anes-
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Aim of review: Postoperative cognitive dysfunction (POCD) is a common complica-
tion following surgery, especially in the elderly population. Surgery exposes patients
to extensive trauma, blood loss, and tissue injury, all of which contribute to an inflam-
matory response. In recent years, inflammation has been shown to be a key contribu-
tor to the pathogenesis of cognitive decline and neuroinflammatory processes, both
in animal models and initial clinical observations.
Method: We review the recent literatures on the proposed mechanisms whereby pe-
ripheral trauma leads to cognitive impairments and some of the new neuroprotective
strategies that may be implemented to prevent neuroinflammation and POCD.
Recent findings: Changes in pro- inflammatory cytokines, alarmins, macrophage acti-
vation and blood-brain barrier (BBB) dysfunction have been proven to be related to
the pathogenesis of cognitive decline using a variety of models, reagents, and technol-
ogies. Strategies to harness these pathways through anti-inflammatory and pro-resolv-
ing strategies show remarkable effects in modulating neuronal function, synaptic plas-
ticity, glia activity and memory processes.
Summary: Further studies are needed to better identify the patients at higher risk for
cognitive decline in the postoperative period and which interventions may be suitable
for translation and new clinical trials.
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thesia, including short and long- term memory,
attention, concentration, mood, language com-
prehension, abstract thinking, executive func-
tioning, social integration, and orientation (5).

Despite no standardized diagnostic criteria,
POCD has become an apparent complication in
the perioperative care setting, especially
amongst elderly patients. Both POD and POCD
are associated with poorer outcome in the pa-
tients, including higher mortality, more comor-
bidities, increased length of hospitalization, pos-
sible permanent dementia, and severely affected
overall quality of life (6).

In 1998, a seminal paper from the Interna-
tional multicenter study on POCD (ISPOCD) re-
ported an incidence of cognitive impairments of
25% at 1 week and 9.9% at 3 months after non-
cardiac surgery (7). The study also identified
risk factors, including advanced age, occurrence
of postoperative infections and exposure to mul-
tiple operations as key contributors to the pro-
longed cognitive deficits. The association be-
tween advanced age and surgical procedure has
been established by several studies thereafter,
with overall incidences of POCD ranging from
12.7% (8) up to 46.1% after 1 year (9, 10).

Apart from noncardiac surgery, especially or-
thopedic surgery, POCD is a frequent complica-
tion of cardiac procedures (11). Long- term cog-
nitive dysfunctions in patients after coronary ar-
tery bypass grafting (CABG) are common, with
incidence up to 42% at five years after hospital
discharge (12). Ablation for atrial fibrillation
(AF) is also associated with a 13% to 20% prev-
alence of POCD in patients with AF at long-
term follow- up (13). Cerebral micro- emboli
caused by the cardiac procedures were initially
considered to lead to brain injury and neuropsy-
chological deficits, however, the observation
from high- intensity transient signals (HITS) in
transcranial Doppler recordings showed no evi-
dent correlation between cerebral micro- emboli
and POCD (14, 15).

The mechanisms whereby surgical procedures
and general anesthesia contribute to cognitive de-
cline are currently poorly understood. Anesthet-
ics may be responsible for modifications in the
body that outlast their elimination, suggesting a
possible role for anesthesia per se in modulating
memory function (16). Anesthetics "cocktails", in-

cluding ketamine, nitrous oxide, propofol, mid-
azolam, barbiturates, and isoflurane have been
found to be associated with markers of neuro-
apoptosis and long- term cognitive impairments
in the developing and adult brain (17, 18). Hall-
marks of neurodegenerative processes such as be-
ta-amyloid (Aβ) aggregation and tau protein phos-
phorylation have been detected to be related to
anesthesia exposure, suggesting that some anes-
thetic agents may increase the risk of Alzheimer's
disease (AD) in vulnerable individuals (19, 20).
Recently, markers of AD have been found to be al-
tered after anesthesia and surgery, highlighting
the possible role of cerebrospinal fluid (CSF) bio-
markers in predicting POCD in different surgical
settings (21-23). In a randomized study from the
ISPOCD study group, no significant difference
was found in the incidence of cognitive dysfunc-
tion at 3 months after either general or regional
anesthesia (24). To date, the role of anesthesia
and other factors contributing to POCD remain
controversial due to underpowered studies with
several methodological limitations (25).

To overcome some of these problems, animal
models have been introduced in order to better
understand the multifactorial origin of cognitive
decline following surgery, anesthesia and comor-
bidities. This review will focus on the growing
evidence highlighting a role of inflammation, as
caused by surgical trauma, in the pathogenesis
of cognitive decline. In this setting, we will dis-
cuss the mechanisms whereby pro- inflammatory
mediators affect the brain and how novel neuro-
protective strategies may be implemented in the
clinic to possibly limit the occurrence of postop-
erative cognitive complications.

Surgery, Neuroinflammation and POCD

Inflammation is an evolutionary conserved criti-
cal response to any type of injury, for example
infection or trauma, and is necessary to restore
function in a tissue or organ (26). Release of sol-
uble mediators, including pro- inflammatory cy-
tokines, chemokines and oxidative stress may
however impact on remote organs including the
central nervous system (CNS) overall contribut-
ing to "sickness behaviour", whose symptoms in-
clude fever, decreased food intake, somnolence,
hyperalgesia, and general fatigue (27). Accumu-
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lating evidence from animal models and clinical
studies suggests a key role of surgical trauma in
modulating the brain and CNS function, leading
to cognitive decline, neuroinflammation and
neurodegeneration (28-34). Some of the most re-
cent proposed mechanisms in the pathogenesis
of POCD are discussed herein:

Systemic Cytokines and Immune- to- Brain Sig-
naling
Surgical procedures expose the patients to signif-
icant damages (i.e. blood loss, tissue trauma,
bone reamings, device implanting, ischemia- re-
perfusion injury etc.) that contribute to inflam-
mation. This ensuing sterile inflammatory re-
sponse is clinically similar to sepsis, even though
not mediated by infective agents (35). Sterile in-
flammation may actually activate similar down-
stream signaling pathways as pathogens, for ex-
ample through release of damage-associated mo-
lecular patterns (DAMPs) and cytokines. These
soluble mediators trigger a systemic inflammato-
ry response through the activation of different
pattern recognition receptors (PRRs), including
toll- like receptors (TLRs), cytokine receptors in-
terleukin (IL)-1, IL-6, and tumor necrosis factor
(TNF)-α and oxidative stress pathways (36).

Animal models of perioperative cognitive de-
cline have been studied to assess the causal rela-
tionship between soluble mediators including
TNF-α (29), IL-1β (28, 32, 37), IL-6 (38), high
mobility group box- 1 (HMGB- 1) (39, 40) and
memory dysfunction after surgery and critical ill-
ness. In a recent meta- analysis, Peng et al.
showed that POCD was correlated with the con-
centrations of systemic inflammatory markers,
with IL- 6 and S- 100β as highly predictive bio-
markers (41). Notably, changes in systemic pro-
inflammatory cytokines are also found in human
samples and some of these soluble mediators
may serve as novel biomarkers to predict poor
cognitive outcome in patients at risk (42-44).

Peripheral immune signals may reach the
brain and cause neuroinflammation by activat-
ing a neuronal, cellular and humoral response
(Figure 1) (45).

Nerve conduction, for example via afferent
vagal projections to the brainstem, represents a
fast processor that sense peripheral inflammato-
ry molecules and conveys information directly

to the brain (46). Activation of the inflammato-
ry reflex limits ongoing systemic inflammatory
processes by modulation of alpha7 nicotinic ace-
tylcholine receptor (nAChR) signaling and sup-
pression of nuclear factor (NF)-κB in bone mar-
row-derived cells (47). A key role of cholinergic
signaling has been proposed in POD (48) and re-
cent evidence from animal models suggests an in-
volvement of neuronal signaling and the inflam-
matory reflex in preventing neuroinflammation
and cognitive decline (30, 49).

The brain has been historically considered an
immuno- privileged organ given the presence of
the blood brain barrier (BBB) but the systemic
pro- inflammatory milieu can negatively impair
its function by direct proteolytic actions on the
tight junctions (TJs), thus allowing more of these
molecules and peripheral cells to enter the brain
(50). It is now established that peripheral injury
increases levels of cytokines including TNF-α, IL-
1β, IL-6, S-100β and these molecules can exert ef-
fects on the BBB, alone or in combination. TNF-
α is rapidly released after orthopedic surgery and
is a strong inducer of endothelia dysfunction and
BBB opening (29). IL-1β exposure induces endo-

Figure 1. Immune-to-Brain Signaling after Surgery.
Surgery induces changes in brain cytokines, including transcription

and translation in selective regions such as hippocampus. From the

periphery, cytokines and other pro- inflammatory mediators can pen-

etrate the brain via the circumventricular organs (CVOs) and cho-

roid plexus, which lack a patent BBB. Cytokines, chemokines and

matrix metalloproteinases (MMPs) can directly disrupt the barrier by

affecting tight junctions (TJs) integrity and allowing blood- derived

molecules like fibrinogen and monocytes- derived macrophages to

enter the brain parenchyma. Through more regulated processes, cy-

tokines can be actively transported across the brain endothelium,

thus gaining access to the CNS and contributing to microglia activa-

tion and de-novo synthesis of other cytokines. At last, peripheral af-

ferents such as the vagus nerve bypass the BBB interface and sig-

nal to brain physiological and inflammatory changes due to system-

ic injury.
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thelial barrier dysfunction through activation of
protein kinase C (PKC), phosphorylation of zona-
occludens (ZO)- 1, and downregulation of clau-
dins (51, 52). Peripheral cytokines, including
alarmins like HMGB- 1, mediate and facilitate
the migration of macrophages into the brain pa-
renchyma through activation of TNF- α/NF- κB
signaling pathway and impairing BBB function,
which may consequently affect memory and cog-
nitive function (30, 53). HMGB- 1 has recently
been shown to be associated with BBB dysfunc-
tion after abdominal surgery and its effect on
macrophages have been proven to be related to
the processes of surgery- induced cognitive de-
cline and long- term neurocognitive function af-
ter sepsis (39, 40, 54). Aside from a direct effect
of pro- inflammatory cytokines on the endotheli-
um, comorbidities including advanced age, sys-
temic diseases, and infections can further impact
on the BBB integrity and permeability (55).
Drugs, including anesthetic agents, and toxins ac-
cumulation due to decreased efflux through per-
meability glycoprotein (P- gp), basement mem-
brane disruption, and decreased nutrient trans-
port may also contribute to BBB damage (55).

Overall, impairments to the neurovascular
unit result in disrupted CNS microenvironment,
with systemic molecules including fibrinogen, cy-
tokines, and alarmins contributing to neuronal
damage and neuroinflammation (56). Yet, the
crosstalk between systemic inflammation, endo-
thelial function and neuroinflammation remains
unclear and further studies are needed to under-
stand how immune- to-brain signaling can be ef-
fectively modulated after surgery.

Neuroinflammation and CNS Function
The transduction of peripheral inflammation in-
to the brain results in neuroinflammation, a pro-
cess that affects glia function and overall neuro-
nal homeostasis (57). Microglia activation is a
hallmark of brain pathology. These cells are re-
sponsible to actively sense changes in brain ho-
meostasis, for example the presence of inflam-
matory molecules, becoming reactive and
mounting macrophage- type innate immunity
within the CNS (58). Microglia have been re-
ferred to as a "double- edged sword": they can
not only exert protective function by releasing
neurotrophic and anti- inflammatory molecules

but also contribute to a pro- inflammatory mi-
lieu, de novo cytokine production, and neurode-
generative processes once activated (59). It is
well established that several substances can acti-
vate microglial cells, for instance, lipopolysac-
charide (LPS), Aβ, interferon (IFN)- γ, ATP and
some pro- inflammatory cytokines (60). Central-
ly released cytokines, including TNF- α, IL- 1β,
and IL-6, have also been implicated in processes
of synaptic formation and scaling, long-term po-
tentiation (LTP), and neurogenesis (61). Recent
studies have highlighted some of the possible
mechanisms whereby surgery and the ensuing in-
flammatory response contribute to cognitive de-
cline, including changes in synaptic plasticity
(62, 63), α- amino-3-hydroxy-5-methyl-4- isoxa-
zolepropionic acid receptor (AMPAR) traffick-
ing (64), and N- methyl- D- aspartate receptor
(NMDA) subtype 2B (NR2B) expression (65).

Although many studies reported microglia ac-
tivation after surgery and anesthesia exposure,
especially in older animals, the exact role of mi-
croglia in the pathogenesis of POCD remains
elusive and no evidence of neuroinflammation
in humans exists. Recently, monocytes and mac-
rophages have been found in the brain parenchy-
ma after peripheral surgery, suggesting a possi-
ble role for these cells in mediating the neuroin-
flammatory response (30, 53). Similar neuropa-
thology with macrophage infiltration and defec-
tive phagocytosis has been highlighted in the
brain of AD patients (66) and this may be medi-
ated by changes in BBB permeability during the
neurodegenerative process (67). Changes in BBB
permeability and function have been reported in
several models of surgery- induced cognitive de-
cline, including orthopedic (30), cardiac (68)
and abdominal (54) surgery- induced cognitive
decline, suggesting a role of endothelial and oth-
er glia cells contributing to cognitive decline.

As key cellular components of the BBB, astro-
cytes have been found to be related to several
neurological conditions. Astrogliosis is character-
ized by cellular hypertrophy and hyperplasticity,
accompanying an elevation of expression of
markers like glial fibrillary acidic protein
(GFAP) and S100β (69). Disrupted BBB can af-
fect astrocytes function leading to astrogliosis
and perturbing neuronal homeostasis (70). Fur-
thermore, mitochondria in astrocytes directly
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Figure 2. Proposed Mechanisms for Neuroinflammation and
POCD.
Surgery has been shown to engage the innate immune system and

activate a cascade of pro-inflammatory mediators, including alarmins,

cytokines and eicosanoids. These molecules exert effects on the hu-

moral and neuronal signaling overall contributing to the neuroinflam-

matory response. These processes are mediated not only by activa-

tion of resident microglia but also by infiltration of peripheral cells into

the brain parenchyma via a disrupted BBB. This pro-inflammatory mi-

lieu and glia dysfunction impair neuronal activity and synaptic plastici-

ty, impinging on processes of long- term potentiation, neurotransmis-

sion, and receptor function at the synapse. In combination, these

pathological hallmarks contribute to learning and memory impair-

ments following surgical trauma.

participates in the metabolic changes associated
with astrogliosis and neuroinflammation via iN-
OS-mediated NO production and subsequent dy-
namin- related protein 1 (Drp1) activation (71).
TNF-α, IL- 1, IL- 6, IFN- γ, bone morphogenetic
proteins (BMPs) and Notch signaling molecules
are all potent activators of astrogliosis and acti-
vated astrocytes subsequently release compre-
hensive cytokine and chemokine secretome [e.
g., IL-1β, TNF-α, monocyte chemotactic protein-
1 (MCP1)], which closely link to NF-κB activa-
tion and might affect short- term memory pro-
cesses at the synapses (72-74). Overall, it is evi-
dent that POCD is a classic multifactorial condi-
tion with many factors contributing to the mem-
ory dysfunction and several targets being affect-
ed both systemically and centrally (Figure 2).

Neuroprotective Strategies and Future Directions

Neuroinflammation has become the hallmark of
cognitive decline and several neurodegenerative
processes (75). Significant efforts have been de-
voted to define strategies to limit, and possibly
prevent, neuroinflammation and ensuing cogni-
tive decline after trauma. Anti- inflammatory
therapies have shown promising effects in limit-
ing memory decline after surgery in several pre-
clinical models. Targeting of the systemic pro-in-
flammatory milieu with selective antibody strate-
gies or general anti- inflammatories has provided
insights on how trauma contributes to POCD
pathophysiology.

Release of pro- inflammatory cytokines and
alarmins is a timely event with defined kinetic
and resolution indices (76). Pre- emptive target-
ing of early- released cytokines like TNF- α,
HMGB- 1, and IL- 1β limit the perpetuation of
the inflammatory cascade and protect the CNS
from neuroinflammation and cognitive decline
(28-30, 39). Administration of broadly used anti-
inflammatory agents including minocycline (77),
non-steroidal anti- inflammatory drugs (NSAIDs)
and more selective cyclooxygenase (COX) inhib-
itors (78, 79) have shown beneficial effects in
preventing microglia activation and memory de-
cline. Antioxidants may also attenuate some of
the processes associated with cognitive decline
(80), including tissue damage and apoptosis re-
sulting from ischemia- reperfusion injury (81). It

has become apparent that cytokines are neces-
sary and sufficient for disease pathogenesis (82)
and inflammation in POCD has gained more at-
tention both from preclinical mechanistic stud-
ies and clinical researches. Endogenous control
of inflammatory process is therefore of consider-
able interest to modulate cognitive dysfunction
and unresolved inflammation (83).

Resolution of inflammation is now regarded
as an active process involving a class of special-
ized pro- resolving lipid mediators (SPM), which
exert potent stereoselective actions during acute
inflammation and restore homeostasis (84, 85).
Resolvins, protectins and maresins are three fam-
ilies of SPM biosynthesized from omega-3 essen-
tial eicosapentaenoic acid (EPA) and docosa-
hexaenoic acid (DHA) that display evident anti-
inflammatory and pro- resolving effects (86).
Omega-3 supplementation has been shown to in-
crease SPM production in the blood (87, 88),
demonstrating the presence of these mediators
in human samples. Recently, resolvins like AT-
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RvD1 have been tested in POCD with remark-
able neuroprotective effects on synaptic plastici-
ty, memory function and neuroinflammation
when administered systemically at very low dos-
es (62). Neuroprotective strategies using SPM
have also been established in different neurologi-
cal models ranging from stroke (89), neurode-
generative processes (90), inflammatory pain
(91), infection- mediated neuroinflammation
(92) to spinal cord injury (93). Thus endogenous
lipid mediators are likely to play key roles in
modulating innate inflammatory response and
may provide novel insights in developing effec-
tive strategies in preventing and treating POCD.

Different agents of relevance to the periopera-
tive care setting and ageing population may also
be used to effectively jumpstart resolution. Ator-
vastatin and pitavastatin reduce the levels of oxi-
dative stress and activation of cytokines in the
CNS (94). These drugs also protect synaptic net-
works and prevent subsequent worsening of cog-
nitive function (95-97). Statins may also redirect
microglial activation and promote an anti-inflam-
matory phenotype, thereby reducing the clinical
occurrence of delirium and attenuating neuroin-
flammation (98). In line with these mechanisms,
preoperative administration of statins has been
associated with the reduced risk of postoperative
delirium after cardiac surgery with cardiopulmo-
nary bypass, and ongoing statin therapy is associ-
ated with a lower daily risk of delirium in criti-
cally ill patients (99, 100). Although some clini-
cal evidence supports the use of statins in reduc-
ing cognitive impairment, double-blind random-
ized placebo- controlled clinical trials are re-
quired to validate these findings.

Recently, a crosstalk between SPM and the in-

flammatory reflex has been shown (101) and
stimulation of the cholinergic anti- inflammatory
pathway through activation of alpha7 nAChR
significantly attenuated macrophage infiltration
in the CNS after surgery, increasing production
of anti- inflammatory cytokines like IL- 10 (30).
To modify the pro/anti- inflammatory balance,
anesthetic agents including isoflurane may con-
tribute to resolution of inflammation (102) and
noble gases like xenon effectively prevented sur-
gery- induced memory dysfunction by modulat-
ing heat shock protein 72 (HSP72) expression
in the hippocampus (97).

Overall, modulation of pro-resolving process-
es after surgery may offer a safe and effective
treatment to prevent postoperative cognitive
dysfunctions in our patients, but it remains of
paramount importance to further develop better
tools to predict POCD in patients at risk, includ-
ing validated blood/CSF biomarkers, neuroimag-
ing (fMRI, PET) and omic- tools (lipidomic, me-
tabolomic) to add on standardized neuropsycho-
logical assessment. These approaches are becom-
ing more mature amongst the neurodegenera-
tive field, with blood tests acquiring more validi-
ty in detecting preclinical AD in patients (103).
Similarly, in the perioperative care it will be nec-
essary to spearhead novel preclinical investiga-
tions and large multicenter clinical studies in or-
der to better understand and treat postoperative
cognitive disorders.
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