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Aim of review: Neuropathic pain induced by injury to the somatosensory system is a
great clinical problem. Despite multiple therapeutic strategies, the medical community still
faces a challenge to treat neuropathic pain in a complete and definitive way, since the
pathogenesis of this hypersensitive state is very complex. Stem cell transplantation may be
an important approach for the treatment of neuropathic pain. This article aimed to review
important and illustrative results from recent stem cell studies under various neuropathic
pain conditions and to interpret their clinical implications for stem cell transplantation.
Methods: We reviewed recent articles and literatures about stem cells for the treatment of
neuropathic pain, in order to identify the types of stem cells, delivery approaches and the ad-
vances of stem cells for the treatment of peripheral nerve injury induced neuropathic pain,
painful diabetic peripheral neuropathy and spinal cord injury (SCI) induced chronic pain.
Recent findings: Recently, the successful use of stem cell for the treatment of a diverse
spectrum of diseases in animals has attracted more attentions from pain scientists. Accumu-
lating evidence has shown that stem cell transplantation has a therapeutic effect on neuro-
pathic pain. Stem cell transplantation can effectively relieve neuropathic pain under differ-
ent pathological conditions. However, it is interesting to point out that peripheral neuropath-
ic pain seems to be more responsive to stem cell therapy than SCI- induced chronic pain.
Moreover, stem cell treatment does not always exert positive results in SCI-induced chron-
ic pain (e.g. aggravating pain above the lesion spinal cord segment).
Conclusion: The analgesic effect of stem cells depends on the capacity to offer a multipo-
tent cellular source for replacing injured neural cells and delivering trophic factors to le-
sion sites. Stem cell researches should focus on both experimental and clinical studies of
neuropathic pain in the future. (Funded by the National Natural Science Foundation of Chi-
na, Beijing Natural Science Foundation, the Excellent Program for Scientific Activity of
Returned Oversea Scholar, Beijing, China, and the Program for High Levels of Health Per-
sonnel in Beijing City, China)
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N
europathic pain triggered by multiple in-
sults to the somatosensory system is a clini-
cal problem and the pathogenesis of this

hypersensitive state is very complex, involving
structural and neurophysiological changes. Cur-
rently, there are no drugs that can treat neuro-
pathic pain in a complete and definitive way.
Therefore, there is an overwhelming need to de-

velop a novel drug or approach for the treatment
of neuropathic pain. Recently, stem cells trans-
plantation has been recognized as an important
approach for the treatment of a variety of diseas-
es in the future. Neuroscientists have also been
beginning to realize the potential application of
stem cells for the treatment of neuropathic pain.
This review will characterize the types of stem
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cells, delivery approaches, and highlight the re-
cent advances of stem cells for the treatment of
various neuropathic pain states.

Types of Stem Cells for the Treatment of Chron-
ic Pain

Stem cells are defined as cells that possess the po-
tential of self-replication and multipotent differ-
entiation. According to the stage of develop-
ment, they are classified as embryonic stem cells
and adult stem cells. Because embryonic stem
cell researches have some ethical limitations,
adult stem cells such as neural stem cells (NSCs),
mesenchymal stem cells (MSCs) and bone mar-
row mononuclear cells (BM- MNCs) are more
widely used in experimental and clinical studies.
NSCs present in the hippocampal dentate gyrus,
olfactory bulb, subventricular zone (SVZ) sur-
rounding the ventricles, subcallosal zone under-
lying the corpus callosum, and the spinal cord of
the embryonic, neonatal, and adult rodent cen-
tral nervous system (CNS) (1), as well as human
fetal CNS (2). Under particular conditions, they
can differentiate into neurons, astrocytes and oli-
godendrocytes (3). The most commonly used
cells for pain relief are MSCs such as those from
bone marrow (bone marrow MSC, BMSC) and
adipose tissues (adipose tissue derived MSC,
ASCs), excluding hematopoietic cells. Moreover,
BM-MNCs have also been extensively evaluated
for the treatment of chronic pain. They are bone
marrow- derived cells which contain various
kinds of cell lineages (e.g., hematopoietic cells,
fibroblasts, osteoblasts, myogenic cells and endo-
thelial lineage) (4). In addition, endothelial pro-
genitor cells (EPCs) are progenitor cells of ma-
ture endothelial cells that show potential for
their endothelial repair and vasculogenesis. They
are being explored as therapeutic cell types for
chronic ischemic pain, especially painful diabetic
peripheral neuropathy. Recently, the therapeutic
effects of human umbilical cord blood- derived
mesenchymal stem cells (hUCB-MSCs) and amni-
otic epithelial stem cells (hAESCs) on chronic
pain attract researchers' attention. HUCB-MSCs
are derived from the umbilical vessels (i.e., two
umbilical arteries and one umbilical vein) which

are embedded in Wharton's jelly (WJ); hAESCs
are derived from amniotic epithelium. They
have emerged as alternative cell types for attrac-
tive advantages such as low risk of infection and
teratoma formation, multipotency and low im-
munogenicity (5).

Multiple Approaches for Stem Cells Delivery in
the Treatment of Neuropathic Pain

Stem cells can be transplanted by local delivery,
intrathecal or intracerebroventricular administra-
tion, intravenous injection, intranasal delivery
and endogenous mobilization by drugs for
chronic intractable pain treatment. Hofstetter et
al. (6) performed local delivery of neurogenin-2
expressing-NSCs directly into the damaged spi-
nal segments in rats subjected to spinal cord inju-
ry, and found that it could reduce allodynia and
improve motor function. However, the trans-
plantation manner has some disadvantages such
as local bleeding and tissue injury, which restrict
its use (7). Hence, intravenous injection is more
attractive for clinical application given the broad
distribution. Surprisingly, following intravenous
administration, stem cells can migrate from
blood vessels into the central nervous system,
crossing the blood- brain barrier (8- 10), and
might therefore home and integrate themselves
into the DRG and spinal cord dorsal horn. It has
been demonstrated that human BMSC either in-
jected in the mouse lateral cerebral ventricle
(11) or systemically into the caudal vein (12)
were able to home into the spinal cord and pre-
frontal cortex of SNI- induced neuropathic mice
to repair the damage. Another animal study of
chronic constriction injury (CCI) models in rats
has also shown that stem cells have a capacity of
specifically reaching the damaged nerve (13) af-
ter a systemic injection to exert an analgesic ef-
fect. However, systemic delivery has a pulmo-
nary trapping effect and only a few cells can
reach the injured sites (7), which restrict its clini-
cal application. Intrathecal administration is a
common drug- given approachof pain research.
The intrathecal administration of stem cells al-
lows the target for DRGs and spinal cord in the
pain pathway and helps to clarify the underlying
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mechanisms (14). Recently, intranasal delivery is
emerging as a noninvasive option for delivering
stem cells with minimal peripheral exposure
(15). Finally, the endogenous stem cells in the
bone marrow might be mobilized by drugs (e.g.,
granulocyte-colony stimulating factor and plerix-
afor) into the blood flow, therefore home to the
lesion sites (16, 17).

Peripheral Nerve Injury- Induced Neuropathic
Pain

Neuropathic pain induced by peripheral nerve
injury is challenging to treat and often refractory
to current pharmacotherapies. Despite decades
of research, information regarding the mecha-
nism of peripheral neuropathic pain is sparse.
However, in recent years, some studies have sug-
gested that the uninjured fibers intermingled
with degenerating injured nerve fibers play criti-
cal roles in peripheral nerve injury-induced neu-
ropathic pain (18). It is well established that
nerve damage leads to Wallerian degeneration
which causes the formation of neurinomas and
alteration of nerve conduction (19) that result in
neuropathic pain. In addition, during peripheral
nerve injury, the adjacent uninjured nerve fibers
develop ectopic and spontaneous discharges
which are associated with central sensitization in
neuropathic pain development. Hence, provid-
ing a favorable milieu for the injured and adja-
cent uninjured nerve fibers may ease neuropath-
ic pain. About providing a protective microenvi-
ronment, neurotrophic factors are known to in-
duce neuroprotection by maintaining functional
integrity, promoting regeneration, regulating
neuronal plasticity, and repairing the damaged
nerves (20). Furthermore, recent studies have
demonstrated that the activation of immune sys-
tem also contributes to peripheral neuropathic
pain pathology (21). Immune cells can penetrate
into peripheral and central nervous system, acti-
vate glial cells and initiate a series of neuroin-
flammatory cascade which are known to facili-
tate pain signaling. In turn, the cascade of neuro-
inflammation- related events may maintain and
worsen the original lesions and subsequently re-
sult in a more generalized immune response (22,
23). Consequently, protecting the injury micro-

environment and balancing the pro- and anti-in-
flammatory cytokines may open new avenues
for neuropathic pain treatment.

Stem cells have been shown to release neuro-
trophic and anti- neuroinflammatory cytokines.
An interesting note is that stem cells, regardless
of their sources, can secrete neurotrophic fac-
tors. For example, human mesenchymal stem/
stromal cells (hMSCs) produce at least 84 tro-
phic factors including epidermal growth factor
(EGF), brain derived neurotrophic factor
(BDNF), neurotrophin- 3 (NT- 3), ciliary neuro-
trophic factor (CNTF), basic fibroblast growth
factor (bFGF/FGF- 2), hepatocyte growth factor
(HGF), and vascular endothelial growth factor
(VEGF) (24). Further, these neurotrophic factors
have also been released by ASCs and other stem
cells (25). Neurotrophic factors released by stem
cells have neuroprotective and neuroregenera-
tive effects (26, 27). Additionally, both in vitro
and in vivo studies have shown that stem cells
can balance pro- and anti- inflammatory cyto-
kines via paracrine effect (28). In vitro experi-
ments, stem cells present an immunosuppressive
effect by interacting with immune cells and regu-
lating soluble factors such as cytokine interleu-
kin-1β (IL-1β) and IL-10 (29, 30). Other studies
have shown that stem cells can inhibit the neuro-
inflammatory cascade through bystander effect
in vivo (12, 13, 31). Besides, other mechanisms
of stem cells including opioids may also be in-
volved in relieving peripheral nerve injury- in-
duced neuropathic pain (32). Together, these da-
ta clearly indicate that, stem cells can produce
both neurotrophic factors and neuromodulators
following administration and therefore exert an
analgesic effect.

Because stem cells of different origin all re-
lease neurotrophic factors and neuromodulators,
various kinds of stem cells exhibit therapeutic ef-
fect on peripheral neuropathic pain. Considering
the homologous development of the lesion in the
peripheral and central nervous system, NSCs
seem to be the most appropriate cell type to
prompt physiological repair of the lesion. Xu et
al. (33) considered that intrathecal administra-
tion of NSCs significantly attenuated mechanical
and thermal hyperalgesia via marked increasing
protein and mRNA levels of glial cell line derived
neurotrophic factor (GDNF) in the spinal dorsal
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horn and dorsal root ganglia of nerve- injured
rats. Yet, another experiment in rats subjected to
neuropathic pain from CCI demonstrated that
the effect contributing to NSCs-induced pain re-
lief depends upon the reduction of proinflamma-
tory cytokines (e.g., IL-1 and IL-6) and the pro-
duction of anti- inflammatory IL-10 mRNA (13).
However, different injection strategies may be re-
sponsible for the distinct mechanisms. Recently,
ASCs have emerged as an attractive cell type for
the treatment of chronic pain because it can be ac-
quired by low invasive procedures. Like NSCs,
by the use of ASCs isolated from female donors
undergoing plastic surgery, recently published da-
ta showed that intravenous administration of
ASCs induced a rapid, long lasting and dose de-
pendent antihyperalgesic and antiallodynic effect
(31). Importantly, ASCs-induced thermal hyperal-
gesia seems to be more potent and the level of an-
ti- inflammatory IL- 10 is higher compared to
NSCs transplantation, suggesting that ASCs pro-
duce an increased analgesia in response to periph-
eral nerve injury (18). Moreover, these studies al-
so showed that NSCs and ASCs both exert dose-
dependent analgesia by repeated administration.
Analogously, MSCs also offer a prominent cell
type for the treatment of peripheral neuropathic
pain as ASCs, because they have no marked phe-
notypic differences. In neuropathic pain mice,
Siniscalco et al. (12) reported that systemic ad-
ministered hMSCs can permeate the blood-brain
barrier to home in the spinal cord and prefrontal
cortex, where they can reduce the protein levels
of pro-inflammatory cytokines (i.e., IL-1β and IL-
17) and increase protein levels of anti-inflamma-
tory cytokines (i.e., IL- 10) that participate in
pain formation. Besides, BM- MNCs, another
type of stem cells from bone marrow, are begin-
ning to yield encouraging results. Klass et al. (34)
reported the beneficial effect of BM-MNCs in at-
tenuating neuropathic pain in a CCI rat model al-
though the mechanisms were not involved. To-
gether, these data suggest that the neurotrophic
factor-releasing nature coupled with the neuroin-
flammation regulatory capacity of stem cells may
contribute to the relief of peripheral neuropathic
pain. However, more extensive researches are
still needed in this area to uncover the beneficial
effects of stem cells before additional clinical tri-
als are conducted.

Painful Diabetic Peripheral Neuropathy

Diabetic peripheral neuropathy (DPN) is the
most common complication of diabetes mellitus,
affecting up to 60% of diabetic patients (35).
Symmetric spontaneous pain, hyperalgesia, allo-
dynia and paresthesia are early symptoms of
DPN (36). Especially, painful diabetic peripheral
neuropathy (pDPN) which presents in 3% to
over 20% of diabetic patients (37) is often refrac-
tory to current pharmacotherapies. It is well es-
tablished that long-term diabetes leads to the de-
struction of peripheral blood vessels, particular-
ly the vasa nervorum, and this destruction can
cause microcirculation transformation and neu-
rotrophin reduction in peripheral nerves that re-
sult in pDPN (38). In addition, deficiency of neu-
rotrophic factors in the development and prog-
ress of pDPN results in distal axonal degenera-
tion, axonal loss, and demyelination (39), which
may attribute to the distal pre- dominant nerve
pathology. Taken together, because the mecha-
nism involves both vascular and neurotrophic de-
ficiency, using a therapeutic agent that has dual
angioneurotrophic activities may prove benefi-
cial for the treatment.

For many decades, most researches on stem
cells have revolved around neurotrophic mecha-
nism. However, recent studies have demonstrat-
ed that stem cells also have paracrine properties
of angiogenic cytokines. For example, EPCs pro-
duce multiple angiogenic factors such as VEGF,
insulin- like growth factor- 1 (IGF-1), and fibro-
blast growth factor- 2 (FGF- 2) (40); other stem
cells (e.g., BM-MNCs and MSCs) have also been
shown to release angiogenic ligands (41, 42). An-
giogenic factors have been reported to play a
crucial role in neovascularization (43). Further-
more, most angiogenic factors released by stem
cells also exert neurotrophic effects. Thus, stem
cell transplantation may exhibit therapeutic ef-
fects encompassing both supplying neurotrophic
cytokines through direct effects on functional re-
covery of peripheral nerves and inducing neovas-
cularization to crease nerve blood flow. Differ-
ent mechanisms of stem cell transplantation in-
volved in different pathological conditions were
shown in figure.

Application of stem cells in preclinical studies
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Figure. Different Mechanisms of Stem Cell Transplantation Involved in Different Pathological Condi-
tions.
The major analgesic mechanisms of stem cell transplantation under the conditions of peripheral nerve injury,
painful peripheral diabetic neuropathy and spinal cord injury are now believed to be different and they can be di-
vided into five main categories: immunomodulation, neurotrophic effect, biologic minipump, differentiation and
angiogenesis. Although knowledge of stem cell- dependent mechanisms known to mediate the relief of chronic
pain increases every year, these mechanisms are depicted here for illustrative purposes. The immunomodulato-
ry effects of stem cells consist of inhibition of the pro-inflammatory cytokines (e.g., TNF-α, IL-1 and IL-6) and up-
regulation of anti-inflammatory cytokines (e.g., IL-4, IL-10 and IL-13). Stem cells and stem cell-stimulated resi-
dent cells also release neurotrophic factors (e.g., EGF, BDNF, GDNF, NT-3, bFGF and VFGF), which are respon-
sible for neuroprotective and neuroregenerative effects. Neurotrophic factors are acted through autocrine effect
on differentiated cells and paracrine effect on resident neurons and glial cells. In addition, stem cells can be ge-
netically modified and then transplanted as a biological minipump to release neurotransmitters and neurotroph-
ins (e.g., γ-GABA, glycine, GDNF and neurogenin-2). Moreover, the special characteristics of stem cells are as-
sociated with their differentiation into neuron, astrocyte, oligodendrocyte and microglia. Finally, stem cells stimu-
late local angiogenesis by secretion of extracellular matrix molecules, VEGF, IGF-1, FGF-2, PIGF and bFGF.
However, after stem cell transplantation, immunomodulation and neurotrophic effects are mainly responsible for
peripheral nerve injury induced neuropathic pain, neurotrophic effect and angiogenesis for painful peripheral dia-
betic neuropathy; and biologic mini-pump and differentiation are primarily associated with spinal cord injury in-
duced chronic pain. Meanwhile, these mechanisms may interact with each other under different pathological
conditions.
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and clinical trials for therapeutic purposes is be-
ginning to yield encouraging results. EPCs are
putative progenitor cells of endothelial cells that
contribute to postnatal neovascularization. For
example, cord blood-derived endothelial progen-
itor cells (CB- EPCs) were reported to improve
motor nerve conduction velocity (MNCV) and
sciatic nerve blood flow (SNBF) with intramus-
cular injection in streptozotocin (STZ)- induced
diabetic rats through enhancing vascular density
in the treated leg muscles (44). Another mecha-
nism by which EPCs contribute to pDPN is up-
regulating the expression of mRNA and proteins
of VEGF, bFGF, BDNF and stromal cell-derived
factor-1a in the sciatic nerve (40). However, the
interaction of these effects may exist at the same
time. Recently, mononuclear cells including PB-
MNCs and BM-MNCs yield potential beneficial
effects for the treatment pDPN in preclinical
models. Naruse and Kim (41, 45) both con-
firmed that BM-MNCs- induced amelioration in
experimental pDPN was associated with in-
creased angiogenesis and neurotrophic factors in
peripheral nerves. Moreover, MSCs may also be
a good candidate for the treatment of pDPN.
Shibata et al. (46) found that VEGF and bFGF
mRNA expressions were significantly increased
in MSCs-injected thigh muscles of STZ-induced
diabetic rats. Interestingly, Kim et al. (47) report-
ed that the levels of NGF and NT- 3, but not
VEGF or bFGF were increased in diabetic ani-
mals received BM-MNCs transplantation. Nota-
bly, additional researches are required to under-
stand the discrepancy in MSCs- induced neuro-
trophic actions. However, it is clear that MSCs
would be an optimal strategy in the treatment of
pDPN. Additionally, intraperitoneal administra-
tion of MSC2, a protective MSCs phenotype,
was shown to prevent thermal hyperalgesia, alle-
viate mechanical allodynia, and facilitate the re-
duction of pro-inflammatory cytokines in the se-
rum level of pDPN mice (48), indicating that
other mechanisms (e.g., immunosuppression)
might also exist. Alternatively, newly improved
induced pluripotent stem cells (iPSCs) have
emerged as attractive tools for the treatment of
pDPN. Okawa et al. (49) suggested that iPSCs-
derived neural crest-like cells can differentiate in-
to Schwann cell- like cells and vascular smooth
muscle cells, improve the impaired nerve and

vascular functions, and produce growth factors
(e.g., NGF, VEGF, NT- 3 and bFGF) in mice
with pDPN. Based on the preclinical data, Come-
rota et al. (50) treated a diabetes mellitus type Ⅰ
patient with 15 intramuscular injections of 49-
fold increased CD90 + mesenchymal cells in a
case report. Dramatic pain relief of this patient
was reported two months later, and analgesics
were no longer needed and blood perfusion was
increased on laser Doppler imaging 6 months lat-
er. After 9 months the patient had no pain and
all the gangrenous and infected tissues were
healed.

Spinal Cord Injury Induced Chronic Pain

Spinal cord injury (SCI) is a serious central ner-
vous system disease because it is associated with
catastrophic consequences in patients. Most SCI
victims suffer from chronic pain which is diffi-
cult to manage or treat (51). Although some
studies suggest that various neuroanatomical and
neurochemical changes take place in the central
nervous system after SCI, little is known about
how these changes facilitate pain signaling. How-
ever, it has been generally accepted that hypo-
function of the inhibitory pathways (e.g., GAB-
Aergic inhibitory system) contributes to many
pathological conditions including SCI- induced
chronic pain (52). Furthermore, the reduction of
neurotrophic factors and the production of pro-
inflammatory cytokines (e.g. IL-1 and TNF-α) in
the injured spinal cord (53, 54) are other mecha-
nisms that contribute to the painful state. These
pathological changes inhibit abnormal axon re-
generation and nerve remyelination (55) and
thereby lead to aberrant regeneration and axo-
nal sprouting.

Multiple types of cells, including stem cells,
can be genetically modified and then transplant-
ed as biological agents to release neurotransmit-
ters and neurotrophins for therapeutic purposes
(56, 57). Moreover, both in vitro and in vivo
studies have shown that the special characteris-
tics of stem cells are associated with their differ-
entiation ability. For example, in vitro studies,
NSCs may differentiate into neurons, astrocytes
and oligodendrocytes, whereas when transplant-
ed into spinal cord, NSCs give rise to glia (al-
most exclusively astrocytes and only relatively

Review Article Stem Cells for the Treatment of Neuropathic PainFang Xie et al.

191



Journal of Anesthesia and Perioperative Medicine

JAPM WWW.JAPMNET.COM July, 2017 Volume 4 Number 4

few oligodendrocytes) and occasional neurons
(6). Importantly, the glia cells play important
roles in synthesis, release, and uptake neu-
rotransmitters (58). Stem cell derived astrocytes
induce anti- nociception by increasing the re-
lease of trophic factors (6, 59), which then
counteract factors that inhibit axonal regenera-
tion. Stem cell derived oligodendrocytes play a
critical role in remyelination of spared axons
within the injured white matter tracts (60). To-
gether, stem cell transplantation may be a poten-
tial treatment for SCI- induced chronic pain
through acting as a biologic minipump and dif-
ferentiation.

Despite the limitations and negative effects,
NSCs transplantation is a potential treatment for
SCI- related chronic pain. It has been generally
accepted that genes of regulatory cytokines (e.g.,
neurotransmitters and neurotrophic factors) that
have the desired therapeutic efficacy may be har-
nessed to provide long- term pain relief. In rats
with SCI, a single subarachnoid injection of
hNT2.17 cells potently reversed tactile allodynia
and thermal hyperalgesia by acting as a “biologic
minipump” to synthesize and release inhibitory
neurotransmitters γ- aminobutyric acid (GABA)
and glycine in the lumbar subarachnoid space
(61). In contrast, Melissa et al. (62) suggested
that murine embryonic C17.2 NSCs lead to ther-
mal and mechanical forelimb allodynia when
transplanted into the injured spinal cord in rats,
whereas GDNF-transfected C17.2 NSCs (C17.2/
GDNF) exert an analgesic effect on SCI- related
pain by inhibiting neuronal sprouting. More-
over, another preclinical study suggested that
transduction of NSCs with neurogenin-2 before
transplantation can suppress astrocytic differenti-
ation, increase oligodendrocytes conversion, pre-
vent graft- related sprouting and thereby reduce
SCI-induced allodynia (6, 63). Yet, a major chal-
lenge of developing NSCs- dependent strategies
for the treatment of SCI-induced chronic pain is
their low transplant efficiency which restricts
the therapeutic potential (64). Accordingly, re-
cent efforts have focused on identifying combina-
torial strategies to improve grafted cell survival
in the host damaged spinal cord. Olfactory en-
sheathing glial cells (OECs) were reported to
promote axonal regeneration, reorganize the gli-
al scar, remyelinate axons and stimulate neural

repair after transplantation. Luo et al. (64)
found that administion of NSCs and OECs to-
gether produce an increase in analgesia by en-
hancing NSCs survival and down regulating
NGF expression. Similarly, neurotrophic factors
were also found to act synergistically with neu-
ral progenitor cells (NPCs) to optimize their inte-
gration into the host spinal cord and facilitate
oligodendrocytes differentiation (65). Taken to-
gether, these findings suggest that NSCs trans-
plantation has a crucial role in pain remission in
response to SCI.

Alternatively, a growing number of preclinical
experiments and clinic trials suggest that MSCs
may also exhibit therapeutic effects on SCI (66).
In early preclinical studies, Yang et al. (67) re-
ported that intraspinal transplantation of HU-
MSCs derived from Wharton's jelly of the umbil-
ical cord improves locomotor recovery, possibly
by increasing axon regeneration in the cortico-
spinal tract and neurofilament- positive fibers
around the lesion. Although whether the trans-
plantation relieves pain- related behavior is not
known, NT- 3 and bFGF produced by hUMSCs
indicate a potential therapeutic evaluation for
pain relief. Recently, Roh et al. (68) suggested
that intraspinal transplantation of hAESCs or
hUMSCs reduces mechanical allodynia in T13
spinal cord hemisected rats both by reducing spi-
nal cord microglia activity and NR1 phosphory-
lation. Together, these data formed the basis for
clinical trials to use MSCs in patients with SCI.
In a case report, a patient with an incomplete
T12- L1 spinal cord injury and a L1 vertebral
body crush fracture was treated with local trans-
plantation of several cycles of MSCs and
CD34+ cells. Allogeneic transplantation marked-
ly decreased SCI-induced pain (from daily 10/10
to once a week 3/10 visual analogue scale) and
significantly improved muscle strength of the pa-
tient (69). Overall, both preclinical studies and
clinical reports support the therapeutic effect of
MSCs in SCI-related chronic pain relief.

These preclinical and clinic data suggest stem
cell transplantation would be an alternative strat-
egy in attenuating SCI- induced chronic pain.
However, additional researches are required to
optimize the function of stem cells and increase
their clinical safety before further clinical appli-
cation.
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Summary

Stem cell transplantation can effectively relieve
neuropathic pain under different pathological
conditions. However, it is interesting to point
out that peripheral neuropathic pain seems to be
more responsive to stem cell therapy than SCI-
induced chronic pain. Moreover, stem cell treat-
ment does not always exert positive results in
SCI- induced chronic pain (e.g. aggravating pain
above the lesion spinal cord segment). Under-
standing the molecular mechanisms underlying
both positive and negative effects of stem cells
on pain processing is very important for the de-
velopment of novel, specific and effective thera-

peutic modalities for pain relief. Stem cell re-
searches should focus on both experimental and
clinical studies of neuropathic pain in the future.
In clinical trials, the type and dosage of the in-
fused stem cells, the safety and the grafting effi-
ciency should be further investigated. In animal
researches, the analgesic mechanisms of stem
cells in different animal models of neuropathic
pain should be explored.
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