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Background: Systemic high mobility group box 1 protein (HMGB1) plays a pivotal role
in mediating development and progression of postoperative cognitive dysfunction
(POCD). However, the molecular mechanism on how systemic HMGB1 neutralization im-
proves POCD is not fully elucidated. Necroptosis could cause sterile inflammation and
negatively associates with the cognitive score in Alzheimer’ s disease. Thus we detected
the effects of anti-HMGB1 antibody on the necroptosis-associated protein expressions dur-
ing the POCD of aged rats.
Methods: Aged Sprague-Dawley rats (19-22 months old) were randomly assigned into
three groups, (1) control with saline; (2) surgery + immunoglobulin G as control antibody;
(3) surgery + HMGB1 neutralizing antibody. A partial hepatolobectomy under sevoflurane
anesthesia and analgesia were performed. Immunoglobulin G (1 mg/kg) and HMGB1 neu-
tralizing antibody (1 mg/kg) were injected via tail right before and 6 hours after surgery.
The expression of necroptosis-associated proteins (HSP90, CDC37, and RIP3) in the pre-
frontal cortex of brain was detected by western blot and immunofluorescence. Oxidative
stress was measured by dihydroethidium staining.
Results: Systemic administration of anti-HMGB1 antibody decreased the levels of reactive
oxygen species (ROS) and reduced the expression of HSP90, CDC37, and RIP3 in prefron-
tal cortex neurons of brains after surgery (P < 0.05, respectively). Moreover, acetylated
HSP90 (ACHSP90) which is a negative regulator of necroptosis was significantly de-
creased by treatments of anti-HMGB1 neutralization antibody (P < 0.05).
Conclusion: Systemic administration of anti-HMGB1 antibody may improve POCD
through reducing reactive oxygen species and decreasing necroptosis in the prefrontal cor-
tex of the aged brain. (Funded by the National Natural Science Foundation of China and
Central South University Postdoctoral Foundation in Changsha, China.)
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P
ostoperative cognitive dysfunction (POCD)
usually happens in elderly patients following
surgery, especially in patients under critical

condition.Most of the elderly patients present im-
paired memory and damaged thinking skills (1).
Up to 74% of elderly patients with critical illness
experience POCD in early days following surgery
and up to 34% of elderly patients still demon-
strate symptoms of POCD one year after surgery
(2). POCD is a disorder complicated with multi-
factors and its occurrence can be affected bymulti-
ple risk factors that may present before, during,
and after surgery. Among these risk factors, the in-
creased vulnerability of brain is an essential factor
intends to induce POCD (3-7). Neuroinflamma-
tion is the major pathological mechanism (8, 9).
Possession of POCD largely extended the length
of hospital stay and cost more expenses for pa-
tients. Even after discharged from hospital life in-
dependence is significantly decreased. Combined
with fast-growing geriatric population, these con-
sequences of POCD put a heavy burden on pa-
tients, their families, and the society (10). There-
fore, exploring mechanisms and developing treat-
ments for POCD is one of the priorities in geriat-
ric research (11).

High mobility group box 1 protein (HMGB1)
which is a crucial member of damage-associated
molecular pattern molecules (DAMPs), is quick-
ly released after tissue trauma and plays an es-
sential role in immune cell recruitment and acti-
vation, cytokine release, and cell death (12).
HMGB1 had been identified as an important
mediator for sterile inflammation (13). In previ-
ous research, we find out HMGB1 significantly
elevated in the peripheral blood of elderly pa-
tients after gastrointestinal surgery and the ele-
vated levels of HMGB1 were positively associat-
ed with increased level of human POCD (14).
Furthermore, systemic neutralization of
HMGB1 in peripheral blood of aged rats after
surgery remarkably decreased the level of post-
operative neurocognitive dysfunction (15).
Meanwhile, Maze and colleagues find out single-
dose injection of HMGB1 caused memory de-
cline and blocking HMGB1 with monoclonal an-
tibody before surgery reduced postoperative
memory decline (16). These data revealed the
pivotal role of systemic HMGB1 in mediating
development and progression of POCD. Howev-

er, the molecular mechanism on how systemic
HMGB1 neutralization improves POCD is not
fully elucidated.

Necroptosis is a common form of pro-
grammed cell death that often seen in ischemic
injuries of the nervous system, heart, and kid-
ney. The occurrence of necroptosis causes sterile
inflammation (17, 18). The HSP90 / CDC37 /
RIP3 signaling pathway is the classic pathway in-
ducing necroptosis (19-24). A recent study has
shown that necroptosis was activated in Alzheim-
er’ s disease and necroptosis activation inversely
correlated with cognitive scores and increased
cell loss (25). The prefrontal cortex is closely in-
volved in cognition and memory. Herein, we as-
sessed the effects of systemic HMGB1 neutral-
ization on necroptosis pathway proteins
(HSP90, CDC37, and RIP3) in prefrontal cortex
of the brain and its role in postoperative cogni-
tive dysfunction in aged rats after surgery. These
effects of systemic HMGB1 neutralization may
provide some new evidence for pathophysiologi-
cal mechanisms of POCD.

Methods

Experimental Animals
All experiments performed in this study were in
accordance with the Central South University
Animal Care and Use Committee guidelines.
The protocol [LLSC(LA)2015-003] was ap-
proved by the ethics committee of the Third
Xiangya Hospital of Central South University.
19-22 months old (aged) female Sprague-Daw-
ley (SD) rats (body weight 450-600 g) were used
in this study (purchased from Central South Uni-
versity Department of Laboratory Animals in
China). All animals were housed in a pathogen-
free environment on a 12-hour light cycle at 25
ºC with access to rodent chow and water. The
relative humidity was 40%-60%. Cages and bed-
dings were changed every other day to keep dry
and clean. Rats had surgery in the diestrus phase
when estrogen levels are at their minimum.

Drug Administration
Aged rats were randomized into 3 groups: (1)
control with intravenous (i. v.) saline injection
only; (2) surgery + immunoglobulin G as con-
trol antibody (S + IgG) (1 mg/kg, i.v.); (3) sur-
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gery + HMGB1 neutralizing antibody (S+anti-
HMGB1) (1 mg / kg, i. v.). For each group, five
aged rats were used. Treatments were imple-
mented through tail vein injection right before
surgical incision and 6 hours after surgery; dos-
age and timing were previously described by
Okuma et al (26). Mouse IgG2b (Sigma, M1395-
5MG) was used as an isotype control. Anti-
HMGB1 monoclonal antibody (2G7, mouse
IgG2b) was kindly provided by Dr. H. E. Harris’
s laboratory, Stockholm, Sweden. The HMGB1
neutralizing efficacy and efficiency of Anti-
HMGB1 monoclonal antibody have been exten-
sively characterized in a series of in vitro and in
vivo studies (26-32). The 2G7 anti-HMGB1
monoclonal antibody neutralizes both HMGB1-
stimulated cytokine/chemokine releases and che-
motactic activities.

Partial Hepatolobectomy
Rats were first rapidly anesthetized with 4.5%
sevoflurane (Maruishi Pharmaceutical Co., Ltd.,
Japan) mixed with high flow of pure oxygen (6
L/min). When each individual rat lost sensation
of right reflex, a 14G catheter was inserted into
its trachea. 2%-2.5% sevoflurane were supplied
with oxygen (80-85%) to maintain anesthesia
and analgesia. The constant gas supplied was un-
der surveillance by a multi-functional monitor
(Datex-Ohmeda, Helsinki, Finland). Rat’ s vital
sign parameters such as respiratory rate (R), Pet-
CO2, FiO2, and FiSev were continuously record-
ed. The depth of anesthesia was modulated ac-
cording to the R (30-50 cycles / min) and the
body movement of the rats. The partial hepa-
tolobectomy was carried out with strict aseptic
procedures and performed as previously de-
scribed with some modifications (33, 34). In
brief, an incision about 2 cm long was made be-
low the xyphoid; the left lobe of the liver was
carefully isolated, ligated, and then removed. Fi-
nally, muscles and skin were closed with sterile
sutures and 0.2 ml of 0.25% bupivacaine was
subcutaneously administered to provide local
postoperative analgesia. Animals were then al-
lowed to recover for further investigation.

Immunofluorescence
For the immunofluorescence experiments, the
localization and expression level of necroptosis

associated proteins (HSP90, CDC37, and RIP3)
were assessed on day 3 after surgery. Rats were
euthanized with chloral hydrate (10%) and per-
fused transcardially with ice cold 0.01 M phos-
phate-buffered saline (PBS). The brain was dis-
sected immediately following termination. One
hemisphere was used for immunofluorescence
and the other for western blot. The hemisphere
used for immunofluorescence was immersed in
4% paraformaldehyde for fixation at 4 ºC for
24 hours. The brains were dehydrated with 15%
sucrose for one day and 30% sucrose for two
days respectively and later embedded in OCT
(Sakura, Tissue-Tek, USA). Cross-sections were
consecutively cut at 20 μm of thickness in Leica
cryostat (CM1860, Leica Biosystems Inc., IL,
USA). Totally thirty sections were prepared.
Three sections of prefrontal cortex were ran-
domly picked from 3 sets of serial sections from
each rat at +1.70 mm to +1.10 mm anteropos-
terior to the bregma for immunostaining. Sec-
tions were washed three times with 0.01 M PBS
(10 min/each time). After three washes, sections
were blocked with 5% bovine serum albumin
(BSA) in 0.01 M PBS plus 0.3% Triton X-100
for 50 min at room temperature and then incu-
bated with primary antibodies HSP90 (1: 100,
Proteintech, Rosemont, IL, USA), Acetylated
HSP90 (AC-HSP90, 1: 100, Rockland Immuno-
chemicals Inc., Limerick, PA, USA), CDC37 (1:
200, Cell Signaling Technology, Danvers, MA,
USA), RIP3 (1: 500, Sigma-Aldrich, St. Louis,
MO, USA), Neuron (1:300, Abcam, Cambridge,
MA, USA), and GAPDH (1: 300, Abcam, Cam-
bridge, MA, USA) at 4 ºC overnight. More de-
tails about the antibodies used are summarized
in Table 1. Following three washes in 0.01 M
PBS, the sections were incubated with secondary
antibodies (Biotinylated Goat Anti-Rabbit IgG,
1:200, Vector, USA) for 2 hours at room temper-
ature. Sections were finally washed three times
with 0.01 M PBS and then covered with per-
mount containing DAPI (Vector, USA, H-1200).
For each stained section, pictures containing pre-
frontal cortex area of the brain were taken un-
der the same magnification (40 X objective lens)
by a fluorescent microscope (DS-Ril, Nikon, Ja-
pan). The mean fluorescence density of target
proteins (AC-HSP90, CDC37, and RIP3) was
measured and analyzed by using Image Pro-Plus

Original Article Anti-HMGB1 Antibody Decreases Necroptosis-Associated ProteinsHongkang Zhou et al.

116



JAPM WWW.JAPMNET.COM May, 2018 Volume 5 Number 3

Original Article Anti-HMGB1 Antibody Decreases Necroptosis-Associated ProteinsHongkang Zhou et al.

6.0 software (Media Cybernetics Inc., Rockville,
MD, USA).

Western Blot
Western blot analysis was employed to further
detect the expression of HSP90, CDC37, and
RIP3 (necroptosis-associated proteins) in the
prefrontal cortex of brain. In brief, frozen pre-
frontal cortex was homogenized in lysis buffer
with protease inhibitors (cat. no. P8340; Roche,
Germany) and nylmethanesulfonylfluoride (cat.
no. p7626; PMSF, Sigma, USA). Protein samples
were centrifuged at 14,000 g for 10 min at 4 ºC
and supernatant was collected. The protein con-
centration was quantified by using a BCA pro-
tein assay kit (CWBio, China) according to the
manufacturer’ s instructions. Equal amount of
protein samples were separated by sodium do-
decyl sulfate polyacrylamide gel electrophoresis
(SDS-PAGE) and electrotransferred to polyvinyli-
dene fluoride membranes. Membranes were
blocked with 10% skim milk in TBST buffer for
1 hour and then incubated with primary antibod-
ies, HSP90 (1:1000, Proteintech, USA), CDC37
(1:1000, Cell Signaling Technology, USA), RIP3
(1:1000, Sigma-Aldrich, USA), and GAPDH (1:
2000, Proteintech, China) overnight at 4 ºC (Ta-
ble 1). The next day, membranes were washed
by TBST for three times, and then secondary an-
tibodies (cat. no. CW0102; goat anti-mouse
IgG, HRP conjugated, 1: 2000, CWBio, China
or cat. no. CW0103; goat anti-rabbit IgG, HRP
conjugated, 1:2000, CWBio, China) were added
to the membranes and incubated at room tem-
perature for 2 hours. After three washes by
TBST, immunoblotted bans were visualized with
ECL PlusTM Western Blotting Detection kit
(GE Healthcare Life Sciences, NJ, USA). Densi-
tometry analyses of western blot bands were de-
termined by image J to quantify the relative pro-
tein levels of necroptosis associated proteins
(HSP90, CDC37, and RIP3) versus GAPDH.

Measurement of Reactive Oxygen Species
The level of reactive oxygen species (ROS) was
assessed by Dihydroethidium (DHE, cat. no.
S0063; Beyotime, China). The DHE can be de-
hydrogenated by react with ROS and produce
ethidium which presents red fluorescence in
cells (Et + cells). The detailed procedures of

ROS measurement by DHE were described pre-
viously (35). In brief, sections of prefrontal cor-
tex were washed three times with 0.01 M PBS
and blocked with 5% BSA in 0.01 M PBS plus
0.3% Triton X-100 for 50 min at room tempera-
ture. Then sections were incubated with anti-
Neuron primary antibodies (1: 300, Abcam,
Cambridge, MA, USA) at 4 ºC overnight. Fol-
lowing three washes in 0.01 M PBS, the sections
were incubated with DHE and secondary anti-
bodies (Biotinylated Goat Anti-Rabbit IgG, 1:
200, Vector, USA) for 30 min at 37 ºC. Sections
were finally washed three times with 0.01 M
PBS and then covered with permount containing
DAPI (Vector, USA, H-1200). Pictures contain-
ing prefrontal cortex area of brain were taken
under the same magnification (40 X objective
lens) by a fluorescent microscope (DS-Ril,
Nikon, Japan). The mean fluorescence density
of Et+ cells was measured and analyzed by us-
ing Image Pro-Plus 6.0 software (Media Cyber-
netics Inc., Rockville, MD, USA).

Statistical Analysis
The data were expressed as mean ± S. E. M.
(standard error of the mean). One-way ANOVA
was used to analyze the data from immunofluo-
rescence, western blot, and ROS measurements.
Bonferroni multiple comparison test was per-
formed to compare selected groups when ANO-
VA showed significance. Statistical analysis was
conducted by using Prism 5 (Graph Pad Soft-
ware Inc., La Jolla, CA, USA). A P < 0.05 was
considered as significant.

Results

Expressions of necroptosis-associated proteins
are decreased by anti-HMGB1 treatment
HSP90, CDC37, and RIP3 are classic necroptosis
associated proteins and play critical roles in
necroptosis. Prefrontal cortex is closely involved
in cognition and memory. Thus we tried to de-
tect the expressions of HSP90, AC-HSP90,
CDC37, and RIP3 in prefrontal cortex by immu-
nofluorescence labeling and western blot analysis.

The immunofluorescent density of AC-
HSP90, CDC37, and RIP3 were measured on
stained sections of prefrontal cortex, which pre-
senting in situ expression level of these proteins.
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Figure 1. Anti-HMGB1 Treatment Increases Expression of Acetylated HSP90 (AC-HSP90)
in Aged Rats After Surgery.
(A) The intensity of AC-HSP90 immunofluorescence (red) was used to show expression level of AC-
HSP90 in the prefrontal cortex of the brain on postoperative day 3. Neurons (Neun) were stained with
green fluorescence. Merged images of AC-HSP90 and Neun double labeling present blue fluorescence.
(B) The quantified mean density of AC-HSP90 fluorescence in prefrontal cortex (FC) shows distinc-
tively reduced expression of AC-HSP90 in surgery + immunoglobulin G as control antibody group (S
+ IgG) and significantly elevated ACHSP90 expression level in anti-HMGB1 antibodies treated group
(S + anti-HMGB1).
Results are presented as mean ± S.E.M. (n=5). * to normal control group (Con), *P < 0.05; # to S +
IgG group, #P < 0.05; by one-way ANOVA. Scale bar = 50 μm.

Table 1. Antibodies Used in the Study.

Antibody

HSP90

AC-HSP90

CDC37

RIP3

Neuron

GAPDH

Host/Clonality

Rabbit/Polyclonal

Rabbit/Polyclonal

Rabbit/Monoclonal

Rabbit/Polyclonal

Rabbit/Monoclonal

Rabbit/Polyclonal

Immunogen

HSP90 fusion protein ag3826

Synthetic peptide corresponding to amino acids surrounding

K294 of human HSP90

Synthetic peptide corresponding to residues surrounding

Val297 of human CDC37

A peptide corresponding to amino acids 473-486 of murine

RIP3

Synthetic peptide within human NeuN aa 1-100 (Cysteine

residue)

Full length native protein (purified) corresponding to human

GAPDH

Company/Category Number

Proteintech, 13171-1-AP

Rockland, 600-401-981

CST, 4793

Sigma-Aldrich, PRS2283

Abcam, ab177487

Abcam, ab9485

Dilution

1:100

1:100

1:200

1:500

1:300

1:300
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Compared to the control groups, the level of
AC-HSP90 in S + IgG was distinctly decreased
on day 3 after surgery (P < 0.05) (Figure 1A, B).
Rats treated with anti-HMGB1 antibodies (S +
anti-HMGB1 group) had significantly higher
AC-HSP90 expression than the S + IgG group
(P < 0.05) (Figure 1A, B). In addition, com-
pared to corresponding control groups, the ex-
pression level of CDC37 (Figure 2A, B), and
RIP3 (Figure 3A, B) were all significantly higher
in S + IgG groups at day 3 after surgery (P <
0.05, respectively). Treatment with anti-
HMGB1 antibodies all apparently decreased
CDC37 (Figure 2A, B), and RIP3 (Figure 3A, B)
expression at day 3 after surgery (P < 0.05, re-
spectively).

We also had assessed HSP90, AC-HSP90,
CDC37, and RIP3 expression in lysate of pre-

frontal cortex of aged rat brains after surgery.
Compared to their corresponding controls, Ex-
pression of HSP90 (Figure 4A), CDC37 (Figure
4B), and RIP3 (Figure 4C) were all increased in
S + IgG groups at day 3 after surgery (P < 0.05,
respectively). Furthermore, Systemic administra-
tion of anti-HMGB1 neutralizing antibodies sig-
nificantly reduced the upregulation of HSP90
(Figure 4A), CDC37 (Figure 4B), and RIP3 (Fig-
ure 4C) in S + anti-HMGB1 groups on day 3 af-
ter surgery as compared to the corresponding S
+ IgG groups (P < 0.05, respectively). Acetyla-
tion of HSP90 has implicated an inhibitory role
in necroptosis (19). Compared to control, the
acetylated HSP90 (AC-HSP90) was obviously
less in S + IgG group on day 3 after surgery
(P < 0.05) (Figure 4A), indicating an increased
level of necroptosis. However, the anti-HMGB1

Figure 2. Anti-HMGB1 Treatment Decreases Expression of CDC37 in Aged Rats After Sur-
gery.
(A) The intensity of CDC37 immunofluorescence (red) was used to show expression level of CDC37 in
the prefrontal cortex of brain on postoperative day 3. Neurons (Neun) were stained with green fluores-
cence. Merged images of CDC37 and Neun double labeling present blue fluorescence.
(B) The quantified mean density of CDC37 fluorescence in the prefrontal cortex (FC) shows increased
expression of CDC37 in surgery + immunoglobulin G as control antibody group (S + IgG) and significant-
ly decreased CDC37 expression level in anti-HMGB1 antibodies treated group (S + anti-HMGB1).
Results are presented as mean ± S.E.M. (n=5). * to normal control group (Con), *P < 0.05; # to S + IgG
group, #P < 0.05; by one-way ANOVA. Scale bar = 50 μm.
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antibodies significantly increased the AC-HSP90
level in S + anti-HMGB1 group (P < 0.05) (Fig-
ure 4A). Combined with immunofluorescence
data of necroptosis-associated proteins, these re-
sults demonstrated a protective mechanism of
anti-HMGB1 neutralizing antibodies in necrop-
tosis.

Anti-HMGB1 treatment decreases oxidative
stress in theprefrontal cortexof brain after surgery
In order to further investigate the mechanisms
of systemic HMGB1 neutralization improving
the postoperative neurocognitive decline, the re-
active oxygen species (ROS) levels of prefrontal
the cortex of aged rat brains after surgery were
measured. Compared to the control group, the
ROS level of S + IgG group was significantly el-
evated on day 3 after surgery, showing an higher-
than-normal oxidative stress after surgery (P <

0.05) (Figure 5A, B). Notably, Compared to the
S + IgG group, the systemic HMGB1 neutraliza-
tion significantly decreased the ROS level in S +
anti-HMGB1 group (P < 0.05) (Figure 5A, B).
Moreover, the neurons of prefrontal cortex
were labeled by immunofluorescence (anti-Neu-
ron primary antibodies). The merged images of
DHE and neurons double immunofluorescence
labeling indicated that the changes of ROS levels
mainly happened in the neurons of prefrontal
cortex (Figure 5A).

Discussion

In this study, we investigated the impact of anti-
HMGB1 neutralizing antibodies on necroptosis
associated proteins of brain prefrontal cortex in
aged rats after liver surgery. Our data demon-
strate that systemic administration of anti-

Figure 3. Anti-HMGB1 Treatment Decreases Expression of RIP3 in Aged Rats After Surgery
(A) The intensity of RIP3 immunofluorescence (red) was used to show expression level of RIP3 in the
prefrontal cortex of brain on postoperative day 3. Neurons (Neun) were stained with green fluorescence.
Merged images of RIP3 and Neun double labeling present blue fluorescence.
(B) The quantified mean density of RIP3 fluorescence in prefrontal cortex (FC) shows increased expres-
sion of RIP3 in surgery + immunoglobulin G as control antibody group (S + IgG) and significantly de-
creased RIP3 expression level in anti-HMGB1 antibodies treated group (S + anti-HMGB1).
Results are presented as mean ± S.E.M. (n=5). * to normal control group (Con), *P < 0.05; # to S + IgG
group, # P < 0.05; by one-way ANOVA. Scale bar = 50 μm.
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HMGB1 antibodies significantly limited surgery-
induced up-regulation of HSP90, CDC37, and
RIP3 expressions in prefrontal cortex of brain.
Meanwhile, oxidative stress in prefrontal cortex
of brain also distinctively reduced by anti-
HMGB1 treatment in aged rats after surgery.
These results indicate that systemic HMGB1
neutralization may provide a protective mecha-
nism of postoperative cognitive dysfunction
through reducing ROS level and necroptosis.

The high mobility group box (HMGB) pro-
tein family is the most represented protein fami-
ly among the high mobility group proteins (36).
There are four members in the HMGB protein
family (HMGB1-4). HMGB1 is the most impor-
tant member of HMGB protein family. As a dis-
covered nuclear protein, HMGB1 has played a
critical role in transcription, replication, DNA
repair, recombination, nucleosome assembly,
and genomic stability (37, 38). Besides its nucle-
ar function, HMGB1 involves in an essential ex-
tracellular activity; that is, HMGB1 belongs to
the damage-associated molecular pattern mole-
cules (DAMPs), which are released from dam-
aged cells, causing immunoresponses locally and

systemically (39). Surgical trauma-induced tissue
damage leads to a rapid release of HMGB1 and
increased systemic levels of HMGB1 have been
detected in elderly patients after gastrointestinal
surgery. Interestingly, these levels correlated
with the development of POCD (14, 16), sug-
gesting that the release of HMGB1 may be criti-
cal in initiating inflammatory cascade leading to
brain dysfunction. Furthermore, HMGB1 re-
lease after surgery has been characterized in
some preclinical models of cognitive decline (27,
40, 41).

Increased levels of HMGB1 after surgery
have been evidenced to compromising the blood-
brain barrier (BBB) and subsequently lead to
neuroinflammation (42, 43). The mechanism
whereby peripheral HMGB1-induced inflamma-
tion contributes to neuroinflammation and cog-
nitive dysfunction had been partially revealed in
our previous study. Increased systemic HMGB1
proteins were able to access the brain and caus-
ing microglial activation. In the meantime, phos-
phorylated RREB which is critical in memory
and synaptic plasticity of hippocampus was sig-
nificantly decreased 3 days after surgery. Treat-

Figure 4. Anti-HMGB1 Treatment Decreases Expression of Necroptosis-Associated Proteins in Aged
Rats After Surgery.
(A) The intensity of RIP3 immunofluorescence (red) was used to show expression level of RIP3 in the prefrontal cortex of
brain on postoperative day 3. Neurons (Neun) were stained with green fluorescence. Merged images of RIP3 and Neun
double labeling present blue fluorescence.
(B) The quantified mean density of RIP3 fluorescence in prefrontal cortex (FC) shows increased expression of RIP3 in
surgery + immunoglobulin G as control antibody group (S + IgG) and significantly decreased RIP3 expression level in an-
ti-HMGB1 antibodies treated group (S + anti-HMGB1).
Results are presented as mean ± S.E.M. (n=5). * to normal control group (Con), *P < 0.05; # to S + IgG group, # P < 0.05;
by one-way ANOVA. Scale bar = 50 μm.

121



Journal of Anesthesia and Perioperative Medicine

JAPM WWW.JAPMNET.COM Volume 5 Number 3May, 2018

ment with anti-HMGB1 antibodies reversed
these two impairments in the hippocampus and
exerted neuroprotective effects in aged rats after
surgery (15). Moreover, increased hippocampal
NR2A and NR2B expression had been found in
aged rats after surgery. This may relate to acute
neurotoxicity (15). Increased neurotoxicity usu-
ally causes elevated levels of oxidative stress and
potentiates neuronal death (44). In current
study, we found significantly increased ROS lev-
els in prefrontal cortex of aged rat brains after
liver surgery. Systemic anti-HMGB1 antibody
treatment reduced this elevated levels of oxida-

tive stress (Figure 5). Increased oxidative stress
can induce necroptosis and necroptosis closely
relates to sterile inflammation (45, 46). HSP90/
CDC37/RIP3 pathway plays a critical role in the
process of necroptosis (21-24). Acetylation of
HSP90 down-regulates the formation of HSP90-
CDC37 complexes and further reduces RIP3 ac-
tivation and MLKL translocation, which sup-
presses cell necroptosis (19-24). In the present
study, the expression of HSP90, CDC37, and
RIP3 were upregulated in aged rats after surgery,
treatment with anti-HMGB1 antibodies signifi-
cantly reduced these expressions (Figure 2-4).

Figure 5. Anti-HMGB1 Treatment Decreases Oxidative Stress in Aged Rats After Surgery.
(A) The immunofluorescence intensity of Et+ cell (red) in prefrontal cortex (FC) of brain on postoperative
day 3 was used to show the level of reactive oxygen species (ROS). Neurons (Neun) were stained with
green fluorescence and DAPI stained nuclei with blue fluorescence. Merged images of Et+ cells and
Neun double labeling present purple fluorescence.
(B) The quantification of mean Et+ fluorescence shows increased ROS level in surgery + immunoglobu-
lin G as control antibody group (S + IgG) and reduced ROS in anti-HMGB1 antibodies treated group (S +
anti-HMGB1).
Results are presented as mean ± S.E.M. (n=5). * to normal control group (Con), *P < 0.05; # to S + IgG
group, #P < 0.05; by one-way ANOVA. Scale bar = 50 μm.
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The important discovery of present study is that
the acetylated HSP90 (AC-HSP90) was reduced
by anti-HMGB1 antibody treatment (Figure 1
and 4A).

Postoperative cognitive dysfunction (POCD)
is a multifactorial disorder prominently found in
elderly patients after surgery. Previous research
showed the ccurrences of POCD were related to
elevated levels of oxidative stress and neuroin-
flammation, phosphorylation of Tau proteins,
and loss of NMDA receptors (47). In previous
study, our data suggest systemic HMGB1 neu-
tralization improves surgery-induced neurocogni-
tive dysfunction (15) and this process may func-
tion through regulating the expression of necrop-

tosis-associated proteins and reducing levels of
oxidative stress. These findings provide new evi-
dence for neuroprotective mechanisms of anti-
HMGB1 antibody treatment which may be bene-
ficial for discovering defined mechanisms and
treatments of POCD.
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